[POI2012]Squarks
题目大意:
设有\(n\)个互不相同的正整数\(\{X_1,X_2,...,X_n\}\),任取两个\(X_i,X_j(i\ne j)\),能算出\(X_i+X_j\)。
现在所有取法共\(\frac{n(n-1)}2\)个和,要你求出\(\{X_i\}\)的取值方案数,并求出所有方案的\(X_1,X_2,\ldots,X_n\)。思路:
设\(\{X_i\}\)两两之和构成集合\(A\),将\(A\)和\(X\)从小到大排序,则\(A_1=X_1+X_2,A_2=X_1+X_3\)。
而\(X_2+X_3\)的取值可能在\(X_3\sim X_n\)中,我们可以枚举\(X_2+X_3\)的取值,这样我们就可以求出\(X_1,X_2,X_3\)的值。
用multiset
维护\(A\),将\(X_1+X_2,X_1+X_3,X_2+X_3\)从集合中删去,剩下最小的一定是\(X_1+X_4\)。这样可以求出\(X_4\)。将\(X_4\)与\(X_1\sim X_3\)的和从集合中删去,剩下最小就是\(X_1+X_5\)。以此类推。
这样我们\(\mathcal O(n)\)枚举\(X_2+X_3\)的值,再\(\mathcal O(n^2\log n)\)不断推出\(X_4\sim X_n\)的值。时间复杂度\(\mathcal O(n^3\log n)\)。
源代码:
#include#include #include #include #include inline int getint() { register char ch; while(!isdigit(ch=getchar())); register int x=ch^'0'; while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0'); return x;}const int N=301,M=(N-1)*(N-2)/2+1;int a[M],cnt,ans[N][N],n;std::multiset set;void solve(const int &k) { set.clear(); for(register int i=3;i<=n*(n-1)/2;i++) { if(i!=k) set.insert(a[i]); } const int tmp=(a[1]+a[2]+a[k])>>1; ans[cnt][1]=tmp-a[k]; if(ans[cnt][1]<=0) return; ans[cnt][2]=tmp-a[2]; if(ans[cnt][2]<=0) return; ans[cnt][3]=tmp-a[1]; if(ans[cnt][3]<=0) return; for(register int i=4;i<=n;i++) { const int val=*set.begin(); ans[cnt][i]=val-ans[cnt][1]; if(ans[cnt][i]<=0) return; for(register int j=1;j